
TD : COMMANDES SQL 

1 

TD : COMMANDES SQL 
 
1 Lister les noms des guildes du jeu. 

SELECT nom FROM guildes ORDER BY nom; 
 

2 Lister les joueurs (prénom, nom) triés par niveau décroissant. 
SELECT prenom, nom FROM joueurs ORDER BY niveau DESC; 
 

3 Lister les types de PNJ disponibles (sans doublons). 
SELECT DISTINCT pnj.type FROM pnj 

 
4 Lister les PNJ de type « marchand » dont le niveau est > 20. 

SELECT pnj.nom FROM pnj WHERE pnj.niveau>20 
 
5 Afficher la durée moyenne (en minutes) des participations réussies par quête. 

SELECT AVG(duree_effective_min) FROM participations WHERE succes='1' 
 
6 Afficher le titre des quêtes et le nom de leur zone. 

SELECT q.titre, z.nom AS zone FROM quetes AS q 
JOIN zones AS z ON q.zone_id=z.zone_id 
 

7 Trouver les quêtes dont le niveau requis est entre 8 et 15 (inclus). 
SELECT quetes.titre FROM quetes 
WHERE quetes.niveau_requis BETWEEN 8 AND 15 

 
8 Compter le nombre de joueurs par guilde. 

SELECT g.nom, COUNT(*) AS nombre_de_joueurs 
FROM guildes AS g JOIN joueurs AS j ON j.guilde_id = g.guilde_id 
GROUP BY g.guilde_id 

 
9 Donner le titre des 2 quêtes les plus tentées (par nombre de participations), avec leur 

total. 
SELECT q.titre AS titre, COUNT(*) AS nombre 
FROM quetes AS q JOIN participations AS p ON q.quete_id=p.quete_id 
GROUP BY q.quete_id 
ORDER BY COUNT(*) DESC LIMIT 2 

 
10 Donner le titre des quêtes qui ont été tentées plus de 1 fois avec leur nombre de 

tentatives. 
SELECT q.titre AS titre, COUNT(*) AS nombre 
FROM quetes AS q JOIN participations AS p ON q.quete_id=p.quete_id 
GROUP BY q.quete_id HAVING COUNT(*) > 1 

 
11 Pour chaque zone, afficher leur nom, le niveau_min et nombre de quêtes disponibles. 

SELECT z.nom, z.niveau_min, COUNT(*) AS nbr_quetes 
FROM zones AS z JOIN quetes AS q ON z.zone_id=q.zone_id 
GROUP BY q.zone_id 

 
 



TD : COMMANDES SQL 

2 

12 Lister les id des participations entre deux dates (ex. date de début du 2025-09-01 au 
2025-09-30, avec BETWEEN). 
SELECT participation_id FROM participations 
WHERE DATE(date_debut) BETWEEN '2025-09-01' AND '2025-09-30' 
ORDER BY date_debut; 

 
13 Afficher les id des 2 dernières participations. 

SELECT participation_id 
FROM participations 
ORDER BY date_debut DESC LIMIT 2; 

 
14 Afficher le titre des quêtes avec leur durée effective moyenne. 

SELECT q.titre, AVG(p.duree_effective_min) AS duree_moyenne 
FROM quetes AS q JOIN participations AS p ON q.quete_id = p.quete_id 
GROUP BY q.quete_id 

 
15 Afficher le titre de la quête avec la durée effective moyenne maximale (globalement). 

SELECT q.titre, AVG(p.duree_effective_min) AS duree_moyenne 
FROM quetes AS q JOIN participations AS p ON q.quete_id = p.quete_id 
GROUP BY q.quete_id ORDER BY duree_moyenne DESC LIMIT 1 

 
16 Lister les (prenom, nom) des joueurs dont le niveau est inférieur au niveau_min de la 

zone « Désert Rouge ». 
SELECT j.prenom, j.nom, j.niveau FROM joueurs AS j 
WHERE niveau < (SELECT niveau_min FROM zones WHERE nom="Désert Rouge") 

 
17 Lister le titre des quêtes dont la durée estimée minimale dépasse la durée effective 

moyenne observée. 
SELECT q.titre, q.duree_estimee_min, AVG(p.duree_effective_min) AS 
duree_moy_obs 
FROM quetes q 
JOIN participations p ON p.quete_id = q.quete_id 
GROUP BY q.quete_id 
HAVING q.duree_estimee_min > AVG(p.duree_effective_min) 

 
18 Lister les couples [joueur(prenom, nom), titre de la quête, nombre de tentatives] pour 

lesquels toutes les participations ont été des échecs (HAVING). 
SELECT j.prenom, j.nom, q.titre, COUNT(*) AS tentatives 
FROM participations p 
JOIN joueurs j ON j.joueur_id = p.joueur_id 
JOIN quetes q ON q.quete_id = p.quete_id 
GROUP BY j.joueur_id 
HAVING SUM(p.succes = 1) = 0 

 
19 Pour chaque nom de guilde, afficher le niveau moyen des joueurs et ne garder que celles 

> 25. 
SELECT g.nom, AVG(j.niveau) AS niveau_moyen 
FROM guildes AS g JOIN joueurs AS j ON g.guilde_id=j.guilde_id 
GROUP BY g.nom HAVING niveau_moyen > 25 

 



TD : COMMANDES SQL 

3 

20 Lister le nom des guildes au niveau moyen des joueurs > moyenne globale des joueurs. 
SELECT g.nom, AVG(j.niveau) 
FROM guildes AS g JOIN joueurs AS j ON j.guilde_id = g.guilde_id 
GROUP BY g.guilde_id 
HAVING AVG(j.niveau)>(SELECT AVG(joueurs.niveau) FROM joueurs) 

 
21 Lister les zones dont le niveau requis moyen des quêtes est supérieur à la moyenne 

globale des niveaux requis. 
SELECT z.nom AS zone, AVG(q.niveau_requis) AS niv_requis_moy 
FROM zones z JOIN quetes q ON q.zone_id = z.zone_id 
GROUP BY z.zone_id 
HAVING AVG(q.niveau_requis) >(SELECT AVG(niveau_requis) FROM quetes); 

 
22 Lister les quêtes situées dans des zones de niveau minimal est ≥ 10 en utilisant 

l’opérateur IN. 
SELECT q.titre 
FROM quetes q 
WHERE q.zone_id IN (SELECT zone_id FROM zones WHERE niveau_min >= 10); 
 

23 Lister les PNJ dont le type n’est « marchand » ni « forgeron » en utilisant l’opérateur NOT 
IN. 
SELECT nom 
FROM pnj 
WHERE type NOT IN ('marchand','forgeron'); 

 
24 Lister les joueurs dont la guilde n’est la guilde d’aucun joueur en utilisant l’opérateur 

NOT IN et une sous-requête dans le NOT IN. Que remarquez-vous ? 
SELECT j.prenom, j.nom 
FROM joueurs j 
WHERE j.guilde_id NOT IN (SELECT guilde_id FROM joueurs); 

 
25 Modifier votre requête en utilisant NOT EXISTS pour répondre à la question précédente. 

SELECT j.prenom, j.nom 
FROM joueurs j WHERE NOT EXISTS(SELECT 1 FROM guildes AS g WHERE 
g.guilde_id=j.guilde_id) 

 
26 Lister les paires des id des joueurs qui appartiennent à une même guilde en utilisant une 

auto-jointure. 
SELECT j1.joueur_id AS id_joueur_A, j2.joueur_id AS id_joueur_B 
FROM joueurs AS j1 
JOIN joueurs AS j2 ON j1.guilde_id = j2.guilde_id 
AND j1.joueur_id < j2.joueur_id 

 
27 Même question mais en affichant le nom de la guilde à laquelle appartiennent les paires 

de joueurs. 
SELECT j1.joueur_id AS id_joueur_A, j2.joueur_id AS id_joueur_B, g.nom 
FROM joueurs AS j1 
JOIN joueurs AS j2 ON j1.guilde_id = j2.guilde_id 
JOIN guildes AS g ON j1.guilde_id = g.guilde_id 
AND j1.joueur_id > j2.joueur_id 


